Pushing the boundaries of whole genome sequencing: From genotype to phenotype with a few extras in between.

Symposium on Advances in Genomics, Epidemiology, and Statistics.

Rasika Mathias
Johns Hopkins University
June 7 ${ }^{\text {th }}, 2019$

Leveraging whole genome sequencing to identify novel determinants of platelet function.

Novel genetic loci identified for telomere length.

Sample numbers by phenotype area ($\mathrm{N}=144 \mathrm{k}$ total)

Sample numbers by ancestry/ethnicity ($\mathrm{N}=144 \mathrm{k}$ total)

Leveraging whole genome sequencing to identify novel determinants of platelet function

GeneSTAR Research Center
Genetic Studies of Atherosclerosis Risk

Genome-wide single variant tests for association were performed on ~ 76 million single nucleotide variants (SNV) in 3,125 European Americans (EA) and 730 African Americans (AA) from the Framingham Heart Study (FHS), Older Order Amish Study (OAA), and the Genetic Study of Atherosclerosis Risk (GeneSTAR) Study.

Collagen

> 104 variants associated with platelet aggregation in response to ADP, epinephrine, or collagen $\left(\mathrm{P}-\right.$ value $\left.<5 \times 10^{-8}\right)$

Iterative conditional analyses refines 16 independent loci

Known Loci $(\mathrm{N}=2)$
Novel Loci
$(\mathrm{N}=14)$
C

	MAF	hg38	rsID	ref/alt	Nearest Gene	ADP	Epinephrine	Collagen
known		Chr 10:111139289	rs7097060	T/A	ADRA2A,GPAM			
known		Chr1:156899922	rs12041331	G/A	PEAR1			
novel		Chr17:16451482	rs575524466	G/A	LRRC75A-AS1			
novel		Chr20:50142397	rs542707094	CTG/C	TMEM189,TMEM189-UBE2V1			
novel		Chr9:28873884	rs185159562	T/A	LINGO2			
novel		Chr10:75490891	rs138028657	A/G	LRMDA			
novel		Chr12:132589485	rs140148392	G/A	FBRSL1,LRCOL1			
novel		Chr11:92185065	rs183146849	ATT	DISC1FP1,FAT3			
novel		Chr1:67128641	rs142001088	C/T	C1orf141			
novel		Chr5:19109993	rs112157462	T/C	LINCO2223,CDH18			
novel		Chr13:96912429	rs61974290	A/G	HS6ST3,LINC00359			
novel		Chr1:20567949	rs12137738	A/T	FAM43B, CDA			
novel		Chr18:29059923	rs138845468	TAAATA/T	CDH2,MIR302F			
novel		Chr6:121921871	rs58250884	A/G	GJA1,HSF2			
novel		Chr17:21960955	.	A/T	KCNJ18,UBBP4			
novel		Chr1:192194880	rs1175170	G/C	RGS18,RGS21			

RGS18 controls platelet generation and function

Regulator of G-Protein Signaling 18 Controls Both Platelet Generation and Function

Nathalie Delessuue-Touchard', Caroline Pendaa • RGS18-/- mice :

Véronique Salel ${ }^{1}$, Caroline Hervé ${ }^{1}$, Anne-Marie

 Tania Sorg ${ }^{3}$, Jean-Marc Herbert ${ }^{1}$, Pierre Savi ${ }^{1}$, f 1 Early to Candidate (E2C), Sanofi, Toulouse, France, 2 SCP Biologics, Sanofi Institute (MCI), Strasbourg, France```
Abstract
RGS18 is a myeloerythroid lineage-specific regulator of (platelets. In the present study, we describe the first gen rol Regulator of G-protein signaling 1
& Regulator of-protein Signaing
of in platelets
acc Kristina Gegenbauer,,,,2 Giuliano Elia, '3lfonso Blan
pre 'Conway Institute, University College Dublin, Dublin, Ireland;' 2Sch
thr 3Mass Spectrometry Resource, Conway Institute, University Colle
int
```

Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the $\mathrm{G}-\alpha-\mathrm{q}$ and $\mathbf{G}-\alpha-i$ subunits of heterotrimeric $\mathbf{G}$ proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3 $\gamma$ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In con-
trast, trea clin and $n$ cyclic nui AMP-dep: cyclic $\mathbf{G}$

- lower number of bone marrow Megakaryocytes(MK).
- peripheral platelets are more prone to be activated at baseline compared to wild type.
- In presence of platelet agonists, platelets aggregate more compared to RGS18 wild types.
- Differential phosphorylation of RGS18 (Serine49 vs Serine216) modifies Calcium gradient in platelets. This change in gradient of calcium dictates the level of platelet activation.


## RGS18 and platelet aggregation to Epinephrine



## GeneSTAR Data available for eQTL analysis RNASeq + WGS

Effect size comparison of eQTLs

## PLATELETS

- AA
- $\mathrm{N}=84$
- 5,004,400 SNPs
- 9500 genes
- EA:
- $\mathrm{N}=101$
- 4,433,801 SNPs
- 9,662
iPSC-derived MEGAKARYOCYTES
- AA
- $\mathrm{N}=110$
- 5,500,942 SNPs
- 4,998 genes
- EA:
- $\mathrm{N}=180$
- 5,064,974 SNPs
- 4,555 genes




## Overlap in platelet aggregation loci and eQTL for the top 22 loci.

eQTL analysis of top variants in PLT RNAseq data:

|  |  | eQTL signal |  |
| :---: | :---: | :---: | :---: |
| SNP | Gene | pvalue | beta |
| rs12041331 | PEAR1 | $3.01 \mathrm{E}-06$ | 0.16729668 |
| rs1175170 | RGS18 | $2.29 \mathrm{E}-03$ | 0.08045384 |

## Co-localization Approaches integrating GWAS and eQTLs



Co-localization also supports the role for multiple causal variants mapping to the GWAS peaks.


Left: EA GWAS p-values (blue) and eQTL q-values (red, only q<0.05 shown) on the -log10 scale near 34Mb on chr20, indicating obvious SNP/eQTL colocalization. Right: Percent eQTL among SNPs ( $y$-axis) as a function of p-value cut-off shows an enrichment of eQTLs among stronger associated SNPs for both EAs and AAs. The much higher percentage among EAs indicates the inadequacy of SNP arrays to capture LD among AAs.

Poster \# 23: Identifying SNP Associations in Under-Powered Whole-Genome Sequencing Association Studies Using eQTLs. Julius Ngwa.

## bioR入iv

THE PREPRINT SERVER FOR BIOLOGY

## Genome Sequencing Unveils a New Regulatory Landscape of Platelet Reactivity

Ali R. Keramati, Ming-Huei Chen, Benjamin A.T. Rodriguez, Lisa R. Yanek, Brady J. Gaynor, Kathleen Ryan, Jennifer A. Brody, NHLBI Trans-Omics for Precision (TOPMed) Consortium,
NHLBITOPMed Hematology and Hemostasis Working Group, Kai Kammers, Kanika Kanchan, Kruthika lyer,
Madeline H. Kowalski,Achilleas N. Pitsillides, L.Adrienne Cupples, Alan R. Shuldiner, Jeffrey R. O'Connell,
Braxton D. Mitchell, Nauder Faraday, Margaret A. Taub, Lewis C. Becker, Joshua P. Lewis, Rasika A. Mathias,
Andrew D. Johnson
doi: https://doi.org/10.1101/621565
This article is a preprint and has not been certified by peer review [what does this mean?].
Abstract Full Text Info/History Metrics Preview PDF

# Novel genetic loci identified for telomere length. 

## Estimating telomere length from WGS data

## Telseq:

Filters WGS reads with a specified number of occurrences of the telomere hexamer TTAGGG, adjusting for counts of overall reads with similar GC content (Z. Ding et al., Nucl. Acids Res. 2014)

## Computel:

Realigns all reads to "telomere reference genome" using bowtie alignment software (L. Nersisyan \& A. Arakelyan, PLoS One, 2015)

## Estimating telomere length: TOPMed data




[A] Pearson correlation between TelSeq and Computel length estimates on 3362 TOPMed samples. [B] Comparison of computational times for TelSeq and Computel [C] Pearson correlation between TelSeq (left) and Computel (right) and Southern Blot TL estimates on 2429 samples from JHS. Colors indicate sequencing plate in Panels $A$ and $C$.

## Multiethnic genomewide tests for association using 82 M sequence identified variants on

 $\mathrm{N}=75,176$ samples with sequence generate telomere length from TOPMed. All loci had a peak $\mathrm{p}<5 \times 10^{-8}$ in the combined meta-analysis.

## Multiethnic genomewide tests for association in TOPMed: 22 identified loci

|  | Locus Name | Known vs Novel | Discovery ( $\mathrm{n}=46458$ ) |  | Replication ( $\mathrm{n}=28718$ ) |  | Meta-Analysis |  | Effect Size |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AAF | P-Value | AAF | P-Value | P-Value | Direction | Variance | Basepairs |
| Tier 1 | TERT* |  | 31\% | 3.3E-24 | 28\% | 1.3E-18 | 4.6E-41 | ++ | 0.21\% | 61.6 |
|  | TERC* |  | 21\% | 6.7E-19 | 22\% | 1.2E-16 | 1.1E-33 | -- | 0.20\% | -68.4 |
|  | RTEL1* |  | 70\% | 1.7E-13 | 71\% | 1.0E-07 | 1.0E-19 | -- | 0.10\% | -42.7 |
|  | SH3PXD2A,OBFC1(STN1),SLK* |  | 69\% | 1.8E-19 | 66\% | 2.2E-18 | 7.6E-36 | -- | 0.21\% | -65.0 |
|  | RFWD3* | Novel | 44\% | 4.1E-15 | 43\% | 3.6E-03 | 1.6E-15 | -- | 0.07\% | -31.8 |
|  | NAF1* |  | 78\% | 1.8E-09 | 78\% | $1.3 \mathrm{E}-04$ | 1.3E-12 | ++ | 0.07\% | 37.2 |
|  | ACYP2* |  | 17\% | 2.4E-08 | 17\% | 2.0E-04 | 2.4E-11 | ++ | 0.05\% | 34.2 |
|  | TERF1* | Novel | 58\% | $1.4 \mathrm{E}-07$ | 54\% | 2.1E-03 | 1.6E-09 | -- | 0.05\% | -27.8 |
|  | LINC01592 | Novel | 0\% | 5.8E-09 | 0\% | $4.5 \mathrm{E}-02$ | 6.1E-09 | -- | 0.03\% | -407.3 |
| Tier 2 | TINF2 | Novel | 1\% | 1.1E-07 | 1\% | 4.3E-07 | $2.8 \mathrm{E}-13$ | ++ | 0.09\% | 150.6 |
|  | SAMHD1 | Novel | 23\% | 7.6E-08 | 26\% | 1.1E-03 | 4.1E-10 | -- | 0.06\% | -34.0 |
|  | TERF2 | Novel | 31\% | 2.6E-06 | 30\% | 2.9E-04 | 2.9E-09 | ++ | 0.04\% | 26.7 |
|  | ZNF676,ZNF729 |  | 59\% | 4.5E-07 | 57\% | 7.3E-03 | $1.9 \mathrm{E}-08$ | ++ | 0.03\% | 21.3 |
|  | TCL1A | Novel | 34\% | 3.8E-06 | 37\% | $1.4 \mathrm{E}-03$ | 2.0E-08 | ++ | 0.03\% | 24.2 |
|  | YY1P2,LRP1B | Novel | 0\% | $3.7 \mathrm{E}-07$ | 0\% | $9.7 \mathrm{E}-03$ | $2.2 \mathrm{E}-08$ | ++ | 0.02\% | 651.2 |
|  | LOC100507516 | Novel | 0\% | 3.7E-06 | 0\% | 2.2E-03 | $3.3 \mathrm{E}-08$ | -- | 0.03\% | -236.8 |
|  | LINC01429 |  | 14\% | 3.1E-06 | 15\% | $3.2 \mathrm{E}-03$ | $4.0 \mathrm{E}-08$ | ++ | 0.04\% | 32.8 |
|  | RPN1 | Novel | 26\% | $4.5 \mathrm{E}-06$ | 23\% | $2.4 \mathrm{E}-03$ | $4.2 \mathrm{E}-08$ | ++ | 0.03\% | 26.2 |
| Tier 3 | DCAF4 |  | 10\% | 1.2E-05 | 10\% | 7.1E-05 | 3.6E-09 | ++ | 0.04\% | 39.5 |
|  | POT1 | Novel | 21\% | 2.6E-04 | 19\% | 2.0E-05 | 3.6E-08 | -- | 0.04\% | -30.3 |
|  | ATM | Novel | 50\% | 2.2E-05 | 49\% | 6.0E-04 | 4.9E-08 | -- | 0.04\% | -25.3 |
|  | CHKB-AS1,MAPK8IP2 | Novel | 30\% | 9.5E-05 | 26\% | $1.2 \mathrm{E}-04$ | $5.0 \mathrm{E}-08$ | -- | 0.04\% | -26.9 |

Association signal for the 22 loci showing all variants having a $p<1 \times 10^{-5}$ in the metaanalysis, and the ancestry specific signal at each of these variants.


# https://www.biorxiv.org/content/10.1101/749010v1 

New Results

## Novel genetic determinants of telomere length from a multi-ethnic analysis of 75,000 whole genome sequences in TOPMed

Margaret A Taub, Joshua S Weinstock, Kruthika R lyer, Lisa R Yanek, Matthew P Conomos, Jennifer A Brody, Ali Keramati, Cecelia A Laurie, Marios Arvanitis, Albert V Smith, John Lane, Lewis C Becker, Joshua C Bis, John Blangero, Eugene R Bleecker, Esteban G Burchard, Juan C Celedon, Yen Pei C Chang, Brian Custer, Dawood Darbar, Lisa de las Fuentes, Dawn L DeMeo, Barry I Freedman, Melanie E Garrett, Mark T Gladwin, Susan R Heckbert, Bertha A Hidalgo, Christie Ingram, Marguerite R Irvin, W Craig Johnson, Stefan Kaab, Lenore Launer, Jiwon Lee, Simin Liu, Arden Moscati, Kari E North, Patricia A Peyser, Nicholas Rafaels, Laura M Raffield, Daniel EWeeks, Marsha M Wheeler, L. Keoki Williams, Wei Zhao, Mary Armanios, Stella Aslibekyan, Paul LAuer, DonaldW Bowden, Brian E Cade, Ida Yii-Der Chen, Michael H Cho LAdrienne Cupples, Joanne E Curran, Michelle Daya, Ranjan Deka, Xiuqing Guo, Lifang Hou, Shih-Jen Hwang, Jill M Johnsen, Eimear E Kenny, Albert M Levin, Chunyu Liu, Ryan L Minster, Mehdi Nouraie, Ester C Sabino, Jennifer A Smith, Nicholas L Smith, Jessica Lasky Su, Marilyn J Telen, Hemant K Tiwari, Russell PTracy, Marquitta J White, Yingze Zhang, Kerri LWiggins, Scott T Weiss, Ramachandran S Vasan, Kent D Taylor, Moritz F Sinner, Edwin K Silverman, M. Benjamin Shoemaker, Wayne H-H Sheu, Jerome I Rotter, Susan Redline, Bruce M Psaty, Juan M Peralta, Nicholette D Palmer, Ruth JF Loos, Courtney G Montgomery, Braxton D Mitchell, Deborah A Meyers, Stephen T McGarvey, Angel CY Mak, Rajesh Kumar, Charles Kooperberg, Barbara A Konkle Shannon Kelly, Sharon LR Kardia, Robert Kaplan, Jiang He, Hongsheng Gui, Myriam Fornage, Patrick T Ellinor, Mariza de Andrade, Adolfo Correa, Eric Boerwinkle, Kathleen C Barnes, Allison EAshley-Koch, Donna K Arnett, Christine Albert, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium,
TOPMed Hematology and Hemostasis Working Group, TOPMed Structural Variation Working Group, Cathy C Laurie, Goncalo Abecasis, Abraham Aviv, Deborah A Nickerson, James G Wilson, Stephen S Rich Daniel Levy, Alexis Battle, Thomas W Blackwell, Ingo Ruczinski, Timothy Thornton, Jeff O'Connell, James A Perry Nathan Pankratz,Alexander P Reiner, Rasika A Mathias
doi: https://doi.org/10.1101/749010
This article is a preprint and has not been certified by peer review [what does this mean?]

## ARTICLE



## Lessons from the TOPMed illustration

High success of the opportunity created to call TL and to understand the genetics of TL.

Multiple novel loci with strong biological plausibility.

New opportunity created to examine TL-phenotype associations for HLB disorders.


# Acknowledgement 

## Framingham Heart Study

## Andrew Johnson

Ming-huei Chen
Benjamin Rodriguez
Jennifer Huffman

Older Order Amish Study

## Joshua Lewis

Braxton Mitchell
Brady Gaynor
Kathleen Ryan

## GeneSTAR

Ali R. Keramati
Lew Becker
Nauder Faraday
Lisa Yanek
Kruthika Iyer
Margaret Taub
Kai Kammers

Genestar
GeneSTAR Research Center Genetic Studies of Atherosclerosis Risk

## Grants and Funding:

The Framingham Heart Study is conducted and supported by the NHLBI in collaboration with Boston University (Contract No. N01-HC-25195). M.H.C., J.D.E. and A.D.J. were supported by National Heart, Lung and Blood Institute Division of Intramural Research funds.
GeneSTAR was supported by the National Institutes of Health/National Heart, Lung, and Blood Institute (U01 HL72518, HL087698, and HL112064) and by a grant from the National Institutes of Health/ National Center for Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. Genotyping services were provided through the RS\&G Service by the Northwest Genomics Center at the University of Washington, Department of Genome Sciences, under U.S. Federal Government contract number HHSN268201100037C from the National Heart, Lung, and Blood Institute.
This investigation was also supported by National Institutes of Health grants U01 GM074518, U01 HL105198, R01 HL137922, R01 HL121007 and the University of Maryland Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488).
This study makes use of data generated by the BLUEPRINT Consortium. A full list of the investigators who contributed to the generation of the data is available from www.blueprint-epigenome.eu. Funding for the project was provided by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 BLUEPRINT.

## NHLBI Trans-Omics for Precision Medicine Whole Genome Sequencing Program

Namiko Abe, Goncalo Abecasis, Christine Albert, Nicholette (Nichole) Palmer Allred, Laura Almasy, Alvaro Alonso, Seth Ament, Peter Anderson, Pramod Anugu, Deborah Applebaum-Bowden, Dan Arking, Donna K Arnett, Allison Ashley-Koch, Stella Aslibekyan, Tim Assimes, Paul Auer, Dimitrios Avramopoulos, John Barnard, Kathleen Barnes, R. Graham Barr, Emily Barron-Casella, Terri Beaty, Diane Becker, Lewis Becker, Rebecca Beer, Ferdouse Begum, Amber Beitelshees, Emelia Benjamin, Marcos Bezerra, Larry Bielak, Joshua Bis, Thomas Blackwell, John Blangero, Eric Boerwinkle, Ingrid Borecki, Russell Bowler, Jennifer Brody, Ulrich Broeckel, Jai Broome, Karen Bunting, Esteban Burchard, Jonathan Cardwell, Cara Carty, Richard Casaburi, James Casella, Mark Chaffin, Christy Chang, Daniel Chasman, Sameer Chavan, Bo-Juen Chen, Wei-Min Chen, Yii-Der Ida Chen, Michael Cho, Seung Hoan Choi, Lee-Ming Chuang, Mina Chung, Elaine Cornell, Adolfo Correa, Carolyn Crandall, James Crapo, LAdrienne Cupples, Joanne Curran, Jeffrey Curtis, Brian Custer, Coleen Damcott, Dawood Darbar, Sayantan Das, Sean David, Colleen Davis, Michelle Daya, Mariza de Andrade, Michael DeBaun, Ranjan Deka, Dawn DeMeo, Scott Devine, Ron Do, Qing Duan, Ravi Duggirala, Peter Durda, Susan Dutcher, Charles Eaton, Lynette Ekunwe, Patrick Ellinor, Leslie Emery, Charles Farber, Leanna Farnam, Tasha Fingerlin, Matthew Flickinger, Myriam Fornage, Nora Franceschini, Mao Fu, Stephanie M. Fullerton, Lucinda Fulton, Stacey Gabriel, Weiniu Gan, Yan Gao, Margery Gass, Bruce Gelb, Xiaoqi (Priscilla) Geng, Soren Germer, Chris Gignoux, Mark Gladwin, David Glahn, Stephanie Gogarten, Da-Wei Gong, Harald Goring, C. Charles Gu, Yue Guan, Xiuqing Guo, Jeff Haessler, Michael Hall, Daniel Harris, Nicola Hawley, Jiang He, Ben Heavner, Susan Heckbert, Ryan Hernandez, David Herrington, Craig Hersh, Bertha Hidalgo, James Hixson, John Hokanson, Kramer Holly, Elliott Hong, Karin Hoth, Chao (Agnes) Hsiung, Haley Huston, Chii Min Hwu, Marguerite Ryan Irvin, Rebecca Jackson, Deepti Jain, Cashell Jaquish, Min A Jhun, Jill Johnsen, Andrew Johnson, Craig Johnson, Rich Johnston, Kimberly Jones, Hyun Min Kang, Robert Kaplan, Sharon Kardia, Sekar Kathiresan, Laura Kaufman, Shannon Kelly, Eimear Kenny, Michael Kessler, Alyna Khan, Greg Kinney, Barbara Konkle, Charles Kooperberg, Stephanie Krauter, Christoph Lange, Ethan Lange, Leslie Lange, Cathy Laurie, Cecelia Laurie, Meryl LeBoff, Seunggeun Shawn Lee, Wen-Jane Lee, Jonathon LeFaive, David Levine, Dan Levy, Joshua Lewis, Yun Li, Honghuang Lin, Keng Han Lin, Simin Liu, Yongmei Liu, Ruth Loos, Steven Lubitz, Kathryn Lunetta, James Luo, Michael Mahaney, Barry Make, Ani Manichaikul, JoAnn Manson, Lauren Margolin, Lisa Martin, Susan Mathai, Rasika Mathias, Patrick McArdle, Merry-Lynn McDonald, Sean McFarland, Stephen McGarvey, Hao Mei, Deborah A Meyers, Julie Mikulla, Nancy Min, Mollie Minear, Ryan L Minster, Braxton Mitchell, May E. Montasser, Solomon Musani, Stanford Mwasongwe, Josyf C Mychaleckyj, Girish Nadkarni, Rakhi Naik, Pradeep Natarajan, Sergei Nekhai, Deborah Nickerson, Kari North, Jeff O'Connell, Tim O'Connor, Heather Ochs-Balcom, James Pankow, George Papanicolaou, Margaret Parker, Afshin Parsa, Sara Penchev, Juan Manuel Peralta, Marco Perez, James Perry, Ulrike Peters, Patricia Peyser, Larry Phillips, Sam Phillips, Toni Pollin, Wendy Post, Julia Powers Becker, Meher Preethi Boorgula, Michael Preuss, Dmitry Prokopenko, Bruce Psaty, Pankaj Qasba, Dandi Qiao, Zhaohui Qin, Nicholas Rafaels, Laura Raffield, Vasan Ramachandran, D.C. Rao, Laura Rasmussen-Torvik, Aakrosh Ratan, Susan Redline, Robert Reed, Elizabeth Regan, Alex Reiner, Ken Rice, Stephen Rich, Dan Roden, Carolina Roselli, Jerome Rotter, Ingo Ruczinski, Pamela Russell, Sarah Ruuska, Kathleen Ryan, Phuwanat Sakornsakolpat, Shabnam Salimi, Steven Salzberg, Kevin Sandow, Vijay Sankaran, Christopher Scheller, Ellen Schmidt, Karen Schwander, David Schwartz, Frank Sciurba, Christine Seidman, Vivien Sheehan, Amol Shetty, Aniket Shetty, Wayne Hui-Heng Sheu, M. Benjamin Shoemaker, Brian Silver, Edwin Silverman, Jennifer Smith, Josh Smith, Nicholas Smith, Tanja Smith, Sylvia Smoller, Beverly Snively, Tamar Sofer, Nona Sotoodehnia, Adrienne Stilp, Elizabeth Streeten, Yun Ju Sung, Jody Sylvia, Adam Szpiro, Carole Sztalryd, Daniel Taliun, Hua Tang, Margaret Taub, Kent Taylor, Simeon Taylor, Marilyn Telen, Timothy A. Thornton, Lesley Tinker, David Tirschwell, Hemant Tiwari, Russell Tracy, Michael Tsai, Dhananjay Vaidya, Peter VandeHaar, Scott Vrieze, Tarik Walker, Robert Wallace, Avram Walts, Emily Wan, Fei Fei Wang, Karol Watson, Daniel E. Weeks, Bruce Weir, Scott Weiss, Lu-Chen Weng, Cristen Willer, Kayleen Williams, L. Keoki Williams, Carla Wilson, James Wilson, Quenna Wong, Huichun Xu, Lisa Yanek, Ivana Yang, Rongze Yang, Norann Zaghloul, Maryam Zekavat, Yingze Zhang, Snow Xueyan Zhao, Wei Zhao, Xiuwen Zheng, Degui Zhi, Xiang Zhou, Michael Zody, Sebastian Zoellner.

